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Introduction
Geoscience modelling poses many challenges due to the limited 
sampling and the complexity of the phenomena that create the 
resulting rock and its properties. When adding to the geologic 
and geomechanical complexity the various possible fluid flow 
mechanisms that are often not fully understood, one realizes 
quickly how daunting geomodelling could be. As a result, oil 
and gas fields are often bought and sold using reserves comput-
ed with simple decline curve analysis tools. Unfortunately, these 
simplified production analysis tools contain no physics and do 
not help develop oil and gas assets which require the knowledge 
of 1) rock properties distribution and 2) the impact of the rock 
properties on the selected production mechanism. For example, 
if one has a naturally fractured reservoir, the presence or 
absence of the natural fractures and the way the wells are drilled 
to encounter or avoid these rock properties will determine the 
reserves and the future of the company developing such an 
asset. Very often the future of many companies is not very bright 
due to their lack of knowledge of the distribution of the rock 
properties such as natural fractures and the subsequent fluid 
flow resulting from drilling and fracking into these heterogene-
ous rock properties.

For the companies that want to prosper by intelligently 
developing their assets, niche companies and technologies have 
been used throughout the years to address all these challenges. 
Among these technologies we find the use of artificial intelli-
gence and machine learning, which were introduced in the oil 
and gas industry in the early 1990s with successful application 
to petrophysics, well test analysis and reservoir modelling. Three 
decades later, the oil industry and its unconventional revolution 
is facing frequent challenges ranging from frac hits and well 
interferences, casing deformation and collapses, expensive cube 
development with meager returns on investment and many other 
puzzling issues with no easy solution. Suddenly, under the stress 
of financial constraints, the machine learning tools criticized for 
three decades as ‘black boxes’ are now becoming the preferred 
solution to all problems. Unfortunately, this love-hate relationship 
the oil industry has with data-driven approaches may hit a rough 
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patch very soon due to its inability to recognize the limitations 
of the available data used in the various oil and gas challenges.

Does the data contain all the physics?
Artificial intelligence was introduced in the early 1990s to 
solve two types of oil and gas problems: Firstly, problems with 
complex and unknown physics, and secondly, problems where 
the physics is known but computationally intensive and does 
not allow for its use in an optimization process where multiple 
iterations are needed. An example of the first type of problem is 
the modelling of the distribution of natural fractures (Ouenes et 
al., 1995) where multiple geologic factors contribute through time 
in creating today a complex fracture network. In such a problem, 
the complex physics that starts with the deposition of the rock, 
followed by multiple tectonic events and finally diagenesis that 
cement some fractures while keeping others open, is impossible 
to represent in a model. The alternative solution is to use the 
available natural fracture data or their proxies along with the 
various geologic factors representing deposition, tectonic events 
and diagenesis to capture that complex physics. However, if the 
field is naturally fractured but the limited data present at the wells 
show no fractures, then the machine learning tools will have 
nothing to learn since the physics to be learnt is not captured in 
the available data.

In the second type of problems, artificial intelligence tools 
could be used to replace a computationally intensive physics 
model with a neural network that could provide a similar answer 
in a very short time. An example of such an application is to 
replace a fluid flow simulator through porous media by a neural 
network (Ouenes et al., 1994). Here again, the data generated 
by a physics model, such as a reservoir simulator for fluid flow, 
to create a neural network model or any other machine learning 
tool must represent all the possible physics. If a unique set of 
boundary conditions (for example a producer well is turned into 
an injector) are not simulated and provided to the neural network, 
then the desired physics is not captured in the data.

In unconventional reservoirs, the available data may not 
have the proper physics, or the physics is too complex and 
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reservoir simulation and 2) unconventional RTA represented 
by an asymmetric tri-linear model as described in Ouenes et 
al. (2017). The major difference between existing industry 
solutions and the one described in this article are summarized  
below
1. � In addition to the existing fracking data, we enrich the space 

solution with 100 full reservoir simulations covering all pos-
sible situations operationally possible around the considered 
unconventional well.

2. � The neural network includes in its structure, our unconven-
tional RTA tool which allows us to incorporate some physics 
during the training of the neural network.

This dual use Data vs Physics is illustrated in Figure 1 where 
we show the key position played by the physics guided neural 
networks.

A simple way to achieve the ability to include in the neural 
network a physics-based model such as the RTA model is to 
change the objective function used in the neural network as 
shown below.
•  Neural Net Objective Function = 

Where
• � Target is the EUR Estimated from the full-field finite differ-

ence simulator
•  Output: EUR estimated from neural network model
•  Physics: EUR estimated using the Trilinear model
•  Gamma: regression parameters

The target EUR is computed by inputting the following parame-
ters in a full-scale reservoir simulation.
•  Reservoir porosity and permeability
•  Asymmetric fracture geometry
•  pressure-dependent permeability

computationally intensive thus making it difficult to include 
in an optimization loop to investigate multiple completions 
strategies. The use of neural networks could be an ideal tool if 
properly used to address both problems. We introduce the use of 
physics-guided neural networks (Jia et al., 2019) in geoscience 
to provide an elegant solution to both problems.

Physics guided neural networks for 
unconventional reservoirs
In establishing an unconventional well where we would like 
to optimize the five-year EUR by adjusting its fracing param-
eters, the goal is to find in possible solutions of fracing 
parameters the best combination that will achieve the highest 
5 year EUR. Unlike the current machine learning solutions 
applied to the same problem, in this work we introduce a 
different approach that leverages all the available data and 
physics based models. The fracking data are collected at the 
wells and the physics-based simulation tools are 1) full field 

Figure 1 The x-axis measures the use of data while the y axis represents the use 
of physics-based models. The introduced RTA guided neural network uses the 
advantages of both approaches.

Figure 2 Space solution showing the various 
classical neural network realizations that have 
satisfied both the required testing and training 
threshold (green dots) and those that are only able to 
satisfy the training requirements (red dots).

Figure 3 Space solution showing the various new 
physics based neural network realizations that 
have satisfied both the required testing and training 
threshold (green dots) and those that are only able 
to satisfy the training requirements (red dots). Notice 
the higher testing correlation coefficient achieved 
thanks to the trilinear model added to the neural 
network training.
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