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lateral stress gradients and imposing the asymmetric frac lengths 
that the earth will allow. The behaviour of the mid-field hydraulic 
fracturing is also affected by multiple near field effects such as 
type of completion (Peterson et al., 2017) and its effects on the 
near wellbore geomechanics. The near field effects could be 
estimated at any well using surface drilling data (Jacques et al., 
2017) which could provide the necessary information required in 
the mid and far fields in the inverse design and validation process 
in situations where there is lack of data.

This multi-scale continuum workflow implemented in a 
single software and field validated at each scale, stands in 
sharp contrast with other convoluted workflows where multiple 
software using different computational methods are applied 
to different types of grids (Finite elements, discrete fracture 
networks, structured and unstructured grids). In the late 1990s, 
using an unstructured grid to capture complex flow patterns in 
fractured reservoirs and around wells was a necessity imposed by 
computer hardware (Heinemann et al., 1998). Today’s computer 
power allows trillion gridblock reservoir simulation (World Oil, 
2016) and seismic bin sizes less than 10 m. This new computation 
environment means that modelling an unconventional reservoir 
using a single high definition structured grid with very small cell 
size in the 1-5m range is possible. The seamless integration of 
disciplines using one structured grid was illustrated with the use 
of 3G workflows to improve frac design (Ouenes et al., 2016). 

Geomechanical modelling using poro-elasticity to 
prevent frac hits and well interferences
A., Ouenes1,2*, A. Bachir1,2, A. Khodabakhshnejad1 and Y. Aimene1,2, present a practical 
application of production and pressure depletion forecast in unconventional wells using an 
asymmetric analytical tri-linear model and fast marching method.

Introduction
Modelling unconventional reservoirs requires a continuum mul-
ti-scale approach to represent the dominant physics occurring at 
each scale (Figure 1). In the most common far field studies (thou-
sands of feet around the wellbore), geophysics used in conjunction 
with processes such as facies constrained extended seismic elastic 
inversion (Kiche et al., 2016) provide dynamic geomechanical 
properties throughout the entire reservoir volume – properties, 
which are critical to the optimal selection of landing zones and 
completions of unconventional wells. It is also in the far field that 
the combination of geomechanical properties with continuous 
natural fracture models (Jenkins et al., 2009) are used as input in 
a robust reservoir geomechanics workflow (Aimene and Ouenes, 
2015) that is able to simulate the interaction between the regional 
stresses and the three major sources of stress gradients affecting 
hydraulic fracturing: variable geomechanical properties, geologic 
discontinuities, and pore pressure variability. The resultant local-
ly-varying differential stress distribution provides the initial reser-
voir stress conditions before fracking and the correct input for the 
estimation of strain during and after hydraulic fracturing, which 
should be validated with a predicted microseismicity (Aimene and 
Ouenes, 2015). This strain provides coupling between the far and 
mid field studies and creates the unique opportunity to constrain 
the mid-field frac design (Paryani et al., 2016) and reduce the 
uncertainties of multiple frack design parameters by constraining 

Figure 1 Modelling of unconventional reservoirs 
approached as a continuum multi-scale problem 
where different tools are used to capture the dominant 
physics occurring in the far, mid and near fields of the 
wellbore.
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